Lecture "Quantum Optics" — Exercise Sheet #2

Problem 1 (easy)

Prove the following relations for the *displacement operator* $D = \exp(\alpha a^{\dagger} - \alpha^* a)$ (using Problem 4 from Sheet 1):

- $D(\alpha) = e^{-i\operatorname{Re}\alpha\operatorname{Im}\alpha}e^{i(\sqrt{2}\operatorname{Im}\alpha)Q}e^{-i(\sqrt{2}\operatorname{Im}\alpha)P}$, where $Q = (a^{\dagger} + a)/\sqrt{2}$ and $P = i(a^{\dagger} a)/\sqrt{2}$ are the position and momentum operator. (*Note:* This is consistent with the fact that the operator $\exp(-iqP)$ generates a translation by q in position space, and the operator $\exp(ipQ)$ a translation by p in momentum space, as you might know from quantum mechanics.)
- $D(\alpha + \beta) = e^{-i \operatorname{Im}(\alpha \beta^*)} D(\alpha) D(\beta)$

${\bf Problem \ 2} \ ({\rm medium})$

Let A and B be hermitian operators. Prove the uncertainty relation

$$\Delta A \Delta B \geq \frac{1}{2} |\langle [A, B] \rangle |$$
,

where $\langle O \rangle \equiv \langle \psi | O | \psi \rangle$ (for a given state $| \psi \rangle$), and the variance $\Delta O \ge 0$ is defined via $(\Delta O)^2 = \langle (O - \langle O \rangle)^2 \rangle = \langle O^2 \rangle - (\langle O \rangle)^2$.

Hint: Consider first the case $\langle A \rangle = \langle B \rangle = 0$, and use the Cauchy-Schwarz inequality to bound $|\langle AB \rangle|$.

Problem 3 (medium)

Show directly that the solution of the eigenvalue equation $a|\alpha\rangle = \alpha |\alpha\rangle$ is given by

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

Hint: Make an ansatz $|\alpha\rangle = \sum_{n=0}^{\infty} c_n |n\rangle$. From $a|\alpha\rangle = \alpha |\alpha\rangle$, you can derive a recursion relation for the c_n , which determines $|\alpha\rangle$ up to normalization.

Problem 4 (tricky)

Consider the squeezing operator $S(\varepsilon) = \exp\left[\frac{\varepsilon^*}{2}a^2 - \frac{\varepsilon}{2}(a^{\dagger})^2\right]$, where $\varepsilon = re^{2i\phi}$, with r > 0. Prove the following relations:

- $S^{\dagger}(\varepsilon) = S(-\epsilon) = S^{-1}(\varepsilon)$, i.e., $S(\varepsilon)$ is unitary.
- S[†](ε)aS(ε) = a cosh(r) a[†]e^{2iφ} sinh(r).
 Hint: Use Exercise 4 from Sheet #1, and show that the nested commutators show an alternating pattern.
- $S^{\dagger}(\varepsilon)X_{\phi}S(\varepsilon) = X_{\phi}e^{-r}$, and $S^{\dagger}(\varepsilon)X_{\phi+\pi/2}S(\varepsilon) = X_{\phi}e^{r}$, where $X_{\phi} = (e^{-i\phi}a + e^{i\phi}a^{\dagger})/\sqrt{2}$.