Lecture "Quantum Optics" - Exercise Sheet \#2

Problem 1 (easy)

Prove the following relations for the displacement operator $D=\exp \left(\alpha a^{\dagger}-\alpha^{*} a\right)$ (using Problem 4 from Sheet 1):

- $D(\alpha)=e^{-i \operatorname{Re} \alpha \operatorname{Im} \alpha} e^{i(\sqrt{2} \operatorname{Im} \alpha) Q} e^{-i(\sqrt{2} \operatorname{Im} \alpha) P}$, where $Q=\left(a^{\dagger}+a\right) / \sqrt{2}$ and $P=i\left(a^{\dagger}-a\right) / \sqrt{2}$ are the position and momentum operator. (Note: This is consistent with the fact that the operator $\exp (-i q P)$ generates a translation by q in position space, and the operator $\exp (i p Q)$ a translation by p in momentum space, as you might know from quantum mechanics.)
- $D(\alpha+\beta)=e^{-i \operatorname{Im}\left(\alpha \beta^{*}\right)} D(\alpha) D(\beta)$

Problem 2 (medium)
Let A and B be hermitian operators. Prove the uncertainty relation

$$
\Delta A \Delta B \geq \frac{1}{2}|\langle[A, B]\rangle|
$$

where $\langle O\rangle \equiv\langle\psi| O|\psi\rangle$ (for a given state $|\psi\rangle$), and the variance $\Delta O \geq 0$ is defined via $(\Delta O)^{2}=\langle(O-$ $\left.\langle O\rangle)^{2}\right\rangle=\left\langle O^{2}\right\rangle-(\langle O\rangle)^{2}$.
Hint: Consider first the case $\langle A\rangle=\langle B\rangle=0$, and use the Cauchy-Schwarz inequality to bound $|\langle A B\rangle|$.

Problem 3 (medium)
Show directly that the solution of the eigenvalue equation $a|\alpha\rangle=\alpha|\alpha\rangle$ is given by

$$
|\alpha\rangle=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle .
$$

Hint: Make an ansatz $|\alpha\rangle=\sum_{n=0}^{\infty} c_{n}|n\rangle$. From $a|\alpha\rangle=\alpha|\alpha\rangle$, you can derive a recursion relation for the c_{n}, which determines $|\alpha\rangle$ up to normalization.

Problem 4 (tricky)
Consider the squeezing operator $S(\varepsilon)=\exp \left[\frac{\varepsilon^{*}}{2} a^{2}-\frac{\varepsilon}{2}\left(a^{\dagger}\right)^{2}\right]$, where $\varepsilon=r e^{2 i \phi}$, with $r>0$. Prove the following relations:

- $S^{\dagger}(\varepsilon)=S(-\epsilon)=S^{-1}(\varepsilon)$, i.e., $S(\varepsilon)$ is unitary.
- $S^{\dagger}(\varepsilon) a S(\varepsilon)=a \cosh (r)-a^{\dagger} e^{2 i \phi} \sinh (r)$.

Hint: Use Exercise 4 from Sheet \#1, and show that the nested commutators show an alternating pattern.

- $S^{\dagger}(\varepsilon) X_{\phi} S(\varepsilon)=X_{\phi} e^{-r}$, and $S^{\dagger}(\varepsilon) X_{\phi+\pi / 2} S(\varepsilon)=X_{\phi} e^{r}$, where $X_{\phi}=\left(e^{-i \phi} a+e^{i \phi} a^{\dagger}\right) / \sqrt{2}$.

