Lecture "Quantum Optics" - Exercise Sheet \#3

Problem 1 (part 1 easy, part 2 medium)

- Verify that for two coherent states $|\alpha\rangle$ and $|\beta\rangle$, it holds that

$$
\langle\alpha \mid \beta\rangle=e^{-\frac{1}{2}|\alpha|^{2}-\frac{1}{2}|\beta|^{2}+\alpha^{*} \beta}, \quad \text { and } \quad|\langle\alpha \mid \beta\rangle|^{2}=e^{-|\alpha-\beta|^{2}}
$$

- Show the completeness relation

$$
\frac{1}{\pi} \int \mathrm{~d}^{2} \alpha|\alpha\rangle\langle\alpha|=\mathbb{1}
$$

(Hint: Use the Fock basis representation of the coherent state, and use polar coordinates for α.)

Problem 2 (medium, some tricky parts)

1. Show that the Hamiltonian $H_{a b}=\hbar\left(i a^{\dagger} b-i b^{\dagger} a\right)$ generates the beam splitter transformation, i.e., $U(t)=\exp \left(-i H_{a b} t / \hbar\right)$ transforms a and b as

$$
\begin{aligned}
U(t)^{\dagger} a U(t) & =\cos (t) a+\sin (t) b \\
U(t)^{\dagger} b U(t) & =\cos (t) b-\sin (t) a
\end{aligned}
$$

(Note: In the lecture, the order of U and U^{\dagger} was reversed, this has been fixed in the uploaded lecture notes.)
2. Show that the generalized beam splitter Hamiltonian $H_{a b}(\theta)=\hbar\left(e^{i \theta} a^{\dagger} b+e^{-i \theta} b^{\dagger} a\right)$ realizes a beam splitter transformation $U_{\theta}(t)=\exp \left(-i H_{a b}(\theta) t / \hbar\right)$ with an arbitrary phase shift between the modes a and b. (Note: Based on part 1 of the problem, this can be done without doing any calculation.)
3. Show that a beam splitter acts trivially on the vacuum, $U(t)|0,0\rangle=|0,0\rangle$.

Problem 3 (easy)

For any analytic function $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$, we can define the action of f on an operator A via $f(A):=\sum_{n=0}^{\infty} A^{n}$. Show that for any unitary transformation $U, U f(A) U^{\dagger}=f\left(U A U^{\dagger}\right)$ (and, more generally, for any invertible $X, X f(A) X^{-1}=f\left(X A X^{-1}\right)$). (Note: This implies that the action of functions on operators can be understood as applying the function to its eigenvalues.)

