Lecture "Quantum Optics" - Exercise Sheet \#8

Problem 1 (easy)

Show that a density matrix ρ describes a pure state $|\psi\rangle\langle\psi|$ if and only if $\operatorname{tr}\left(\rho^{2}\right)=1$. [$\operatorname{tr}\left(\rho^{2}\right)$ is also known as the purity of ρ.]

Problem 2 (medium)

The goal of this problem is to relate different ensemble decompositions of a given mixed state ρ.

- Consider $\rho=\frac{2}{3}|0\rangle\langle 0|+\frac{1}{3}|1\rangle\langle 1|$. Show that ρ can also be written as a mixture of two non-orthogonal states $\left|\phi_{ \pm}\right\rangle=\alpha|0\rangle \pm \beta|1\rangle$ for appropriately chosen α, β, and mixing weights, i.e., $\rho=p_{+}\left|\phi_{+}\right\rangle\left\langle\phi_{+}\right|+$ $p_{-}\left|\phi_{-}\right\rangle\left\langle\phi_{-}\right|$. Try to classify all decompositions of ρ into two pure states.
- Given two (generally non-orthogonal!) decompositions of the same mixed state, $\rho=\sum_{i=1}^{N} p_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|$ and $\rho=\sum_{j=1}^{M} q_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$, show that any two such decompositions can always be related by a transformation $\sqrt{p_{i}}\left|\phi_{i}\right\rangle=\sum_{i j} v_{i j} \sqrt{q_{j}}\left|\psi_{j}\right\rangle$, where $v_{i j}$ is an isometry, i.e., $\sum_{j=1}^{M} v_{i j} v_{k j}^{*}=\delta_{i k}$ if $M \geq N$, and otherwise $\sum_{i=1}^{N} v_{i j} v_{i k}^{*}=\delta_{j k}$. (Note: It can be helpful to first consider the case where one of the two decompositions is the eigenvalue decomposition, i.e., the vectors $\left|\phi_{i}\right\rangle$ are orthogonal.)

Problem 3 (easy)

In the lecture and exercise sheet 6 (problem 1), we have discussed the Bloch sphere representation of pure states of two-level systems, $|\psi\rangle\langle\psi|=\frac{1}{2}(\mathbb{1}+\vec{n} \cdot \vec{\sigma})$, where $|\vec{n}|=1, \vec{n} \in \mathbb{R}^{3}$, and $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$; which implies that pure states correspond to vectors \vec{n} on the unit sphere.
In this problem, we will extend the Bloch sphere picture to mixed states of two-level systems.

- Show that any density matrix of a two-level system (i.e., any $\rho \geq 0$ with $\operatorname{tr} \rho=1$) can be written as

$$
\rho=\frac{1}{2}(\mathbb{1}+\vec{n} \cdot \vec{\sigma}),
$$

where $|\vec{n}| \leq 1\left(\vec{n} \in \mathbb{R}^{3}\right)$, i.e., ρ is represented by a point inside the unit sphere.

- Show that ρ is a pure state if and only if $|\vec{n}|=1$.
- Find the Bloch sphere representation of (i) $\rho=\frac{1}{2} \mathbb{1}$, (ii) $\rho=|0\rangle\langle 0|$ and (iii) $\rho=\frac{2}{3}|0\rangle\langle 0|+\frac{1}{3}|1\rangle\langle 1|$.
- Show that the point on the Bloch sphere representing a convex combination of two mixed states, $\rho=p_{1} \rho_{1}+p_{2} \rho_{2}\left(p_{1}>0, p_{2}>0, p_{1}+p_{2}=1\right)$, is given by $\vec{n}=p_{1} \vec{n}_{1}+p_{2} \vec{n}_{2}-$ this is, a convex combination of states corresponds to a convex combination of the corresponding points in the Bloch sphere.

Problem 4 (easy)

Compute the reduced density matrices $\rho_{A}=\operatorname{tr}_{B}(\rho)$ and $\rho_{B}=\operatorname{tr}_{A}(\rho)$ for the following states $\rho \equiv \rho_{A B}$ of two two-level systems (qubits) A and B :

- $\rho=|\psi\rangle\langle\psi|$ with $|\psi\rangle=|a\rangle_{A}|b\rangle_{B}$.
- $\rho=|\psi\rangle\langle\psi|$ with $|\psi\rangle=\left(|00\rangle_{A B}+|11\rangle_{A B}\right) / \sqrt{2}$.
- $\rho=|\psi\rangle\langle\psi|$ with $|\psi\rangle=\left(|01\rangle_{A B}-|10\rangle_{A B}\right) / \sqrt{2}$.
- A general two-qubit state

$$
\rho=\left(\begin{array}{cccc}
a & b & c & d \\
b^{*} & e & f & g \\
c^{*} & f^{*} & h & k \\
d^{*} & g^{*} & k^{*} & l
\end{array}\right),
$$

where the ρ is written in the basis $\left\{|00\rangle_{A B},|01\rangle_{A B},|10\rangle_{A B},|11\rangle_{A B}\right\}$.

