Lecture Entanglement and Locality in Quantum Many-body Systems — Exercise Sheet #1

Problem 1 ((a)—(c) easy, (d) a bit tricky)
We have defined the operator norm as [|A|| = sup)4 |H<|1>¢ |, Show that

(a) [Alg) [ < [IA[l]¢)] -
(b) For U and V unitary, |[VAU| = ||A]|.
(c) [IAB|l < [lA[I{[BI[.

(d) Show that |4 ® 1| = ||A]|-
(Hint: The “>” direction should be easy. To prove the “<“ direction, use that any normalized
vector on a bipartite system can be written as |¢) = > \/pi|a)|Bi), with p; > 0, > p; = 1, and

(aila); = (BilB); = di5.)

)
)
)
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Problem 2 (easy to medium)

For any operator A on a lattice A, we can construct an operator A which acts only a sub-region Z
through

A= / dUUAUT .

Here, [ dU is an integral over all unitary matrices acting on A\Z, where the integral is over the so-called
Haar measure (or unitarily invariant measure), which means that the integral has the property that

/df( /deU /deV

for any unitary V acting on A\Z.

(a) Show that the unitary invariance of the integral implies that VA = AV for any unitary V acting on
A\Z.
It turns out that this property implies that A is of the form Ay @ Tp\z, e, A is an operator
supported on Z. This is a consequence of Schur’s lemma (a fundamental lemma in representation
theory), and we are not going to prove this here. Rather, we want to show that A provides a good
approximation to A, given a Lieb-Robinson type bound on commutators.

(b) Consider operators Ax(t) and By as they appear in the Lieb-Robinson bound, let K;(X) be the
circle of radius | around X, and define Ax(t) as above with U supported in T'\ K;(X). Show that

1Ax(t) — Ax(8)] < / aU|[Ax (8), U])

and argue how this shows that Ax (t) is well approximated by an operator Ax (t) which is supported
in K;(X) given a Lieb-Robinson bound holds.
(Hint: Use that UAUT = A+ U[A,UT].)

Problem 3 (medium)

Show that the Lieb-Robinson bound given in the Lecture gives rise to the following bound (under the
same conditions as the original Lieb-Robinson bound): There exists a velocity v such that for all ¢t <1 /v,
it holds that

vt
lAx (@), Bylll < 79OIX I Ax By |l ,

where | = d(X,Y), and ¢(I) decays exponentially with [. This is, outside the “light cone” [ = vt, the
correlations decay exponentially with the distance (and linearly with the “angle” vt/I).

(Hint: Choose a velocity v = a(2s/p) with a > 1, and use ¢* — 1 < ze”.)

How does the rate of the exponential decay of ¢(I) depend on the chosen velocity v, i.e., on the a above?



