
Lecture “Quantum Information” WS 16/17 — Exercise Sheet #4

Problem 1: Decay of entanglement.
Consider a Bell state ρ = |Φ+〉〈Φ+|, where |Φ+〉 = 1√

2
(|00〉+ |11〉). Superposition states like ρ generally

are not stable, but decay over time. A typical evolution is that the populations (i.e., the diagonal
elements) becom equal, while the off-diagonal elements decay to zero. Suppose that the state evolves as

ρ(t) = p+|00〉〈00|+ p−|01〉〈01|+ p−|10〉〈10|+ p+|11〉〈11|+ 1
2e
−t/T2 |00〉〈11|+ 1

2e
−t/T2 |11〉〈00| ,

with p± = 1
4 (1± e−t/T1).

For sufficiently long times, this state tends to limt→∞ ρ(t) = 1
4 I, the maximally mixed state.

1. Write a matrix form of state ρ(t).

2. Take its partial transpose ρ(t)TB and write its matrix form.

3. Calculate the eigenvalues of ρ(t)TB . (You may use a computer algebra system, though it should
not be necessary.)

4. Sketch how the eigenvalues change over time for T1 = T2 = 1. What it the asymptotic limit? Also,
compute and plot the negativity N (ρ(t)) and log-negativity EN (ρ(t)) as a function of time.

5. Is the state ρ(t = 0) is entangled or separable? Find time after which state ρ(t) becomes separable.

Problem 2: Bell inequalities and witnesses.
The CHSH operator

C = ~n1~σ ⊗ ~n0~σ + ~n1~σ ⊗ ~n2~σ + ~n3~σ ⊗ ~n2~σ − ~n3~σ ⊗ ~n0~σ

with ~nk = (cos(kπ/4), 0, sin(kπ/4)) has the property that |tr[Cρ]| ≤ 2 for all ρ which describe a local
hidden variable (LHV) model. Note that any separable state ρ =

∑
piρ

A
i ⊗ ρBi describes a LHV model.

1. Use C to construct an entanglement witness W . Provide an explicit form of the witness. (You may
use that all separable states describe LHV models to prove that tr[Wρ] ≥ 0.)

2. In which range of λ does this witness detect Werner states ρ(λ) = λ|Ψ−〉〈Ψ−|+ 1−λ
4 I, with |Ψ−〉 =

1√
2
(|01〉−|10〉)? How does it compare to the entanglement witnessW = F discussed in the lecture?

Problem 3: Witnesses and reduction criterion.
Consider W = I− d|Ω〉〈Ω|, with |Ω〉 = 1√

d

∑d
i=1 |i, i〉.

1. Show that tr[Wρ] ≥ 0 for separable states ρ, i.e., W is an entanglement witness.

2. Consider the family

ρiso(λ) = λ
I
d2

+ (1− λ)|Ω〉〈Ω|

of isotropic states. In which range of λ is ρiso(λ) ≥ 0? In which range of λ does W detect that
ρiso(λ) is entangled?

3. Consider the case d = 2. What does W do on the antisymmetric state |Ψ−〉 = 1√
2
(|01〉 − |10〉)?

4. Derive the positive map Λ corresponding to the witness W . Prove directly that it is indeed a
positive map.

5. In which range of λ does Λ detect that ρiso(λ) is entangled? What does Λ do on the antisymmetric
state?



Problem 4: One-qubit unitaries.

1. Show that for any U such that U2 = I the following holds exp{iφU} = cosφ I − i sinφU.

2. Verify that Rz(φ) is indeed rotates a vector r̂ = (rx, ry, rz) around z-axis by angle φ, i.e. let ρ has
a Bloch vector r̂, find Bloch vector of a rotated state ρ′ = Rz(φ)ρRz(φ)†.

3. Show that up to a global phase any unitary one-qubit transformation U can be implemented
with three rotations about x and z-axes, i.e. find angles α, β, γ and α′, β′, γ′ such that U =
Rx(α)Rz(β)Rx(γ) and U = Rz(α

′)Rx(β′)Rz(γ
′). (Hint: Up to a global phase factor any unitary

transformation on a single qubit is a rotation U = Rn̂(φ) by an angle φ about axis n̂ = (nx, ny, nz).)

(Note: There is nothing specific about the choice of x and z axes, one may e.g. choose y and z instead,
i.e. for some angles α, β, γ the following holds U = Rz(α)Ry(β)Rz(γ).)

Problem 5: Controlled-U gate.

In the following, we will show that for any unitary matrix U controlled-U gate can be realized using only
one-qubit and CNOT gates.

1. Use previous exercise to show that for a special unitary matrix U ∈ SU(2) (i.e. det(U) = 1) there
exist matrices A,B,C ∈ SU(2) such that ABC = I and AXBXC = U , where X is one of the
Pauli matrices.

2. Based on this, find a realization of controlled-U gate (for any unitary U) that uses only the matrices
A, B, and C, CNOT gates, and an additional one-qubit gate E that is used to adjust the global
phase.

Problem 6: Gate identities.
Verify the following gate identities given in the lecture:

1. Verify the identities for the behavior of the CNOT gate when conjugating it with Hadamard gates.

2. Verify the construction for the Toffoli gate using controlled-V gates.

(Note: While both of these identities can be verified by multiplying out the matrices, it is more instructive
to treat the control qubits as “classical”, i.e., consider each of their values in the computational basis.)

Problem 7: n-qubit Toffoli gate.
An n-qubit Toffoli gate is a Toffoli gate with n − 1 controls; i.e., it flips the n’th bit if and only if the
other n− 1 bits are all one.

1. Show that the n-qubit Toffoli gate can be implemented using two n− 1-qubit Toffoli gates and two
regular 3-qubit Toffoli gates using one ancillary qubit.

2. Decomposing every gate into 3-qubit Toffoli gates, how many 3-qubit Toffoli gates do you need to
construct the n-qubit Toffoli gate?

3. Find a construction which is more efficient in terms of the scaling of the number 3-qubit Toffoli
gates used, at the cost of using more ancillas. (A linear number of 3-fold Toffoli gates should
suffice.)

(Hint: Remember that the Toffoli gate can be used to build a logical AND gate using ancillas.)

Problem 8: The Bernstein-Vazirani algorithm.
This is a variation of the Deutsch-Jozsa problem. Suppose that the quantum black box computes one of
the functions fa, where fa(x) = a · x and a is an n-bit string. The task is to determinate a. Show that
Deutsch-Jozsa algorithm can solve this problem, i.e. can find the n-bit string a with probability one.


