Problem 1: Measurements and filtering

Suppose that the initial state of system AB is

$$|\phi_{\lambda}\rangle = \sqrt{\lambda}|00\rangle + \sqrt{1-\lambda}|11\rangle.$$

The goal is to obtain a maximally entangled state $|\phi_{0.5}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$ with some probability after a measurement on system A.

- 1. Show that the operators $\Pi_0 = (|0\rangle\langle 0| + \sqrt{\gamma}|1\rangle\langle 1|)_A \otimes \mathbb{1}_B$ and $\Pi_1 = \sqrt{1-\gamma}|1\rangle\langle 1|_A \otimes \mathbb{1}_B$, with $0 \le \gamma \le 1$. define a POVM measurement. (Note that these describe measurements carried out on Alice's side only!)
- 2. Determine the outcome probabilities and the post-measurement states for each measurement outcome.
- 3. Find a value γ such that one of post-measurement states becomes a maximally entangled state. Calculate the corresponding probability with which the initial state becomes a maximally entangled state.

Problem 2: Quantum channels.

In this problem, we will study some commonly appearing quantum channels. In addition to the problems listed, verify for each channel that it is a CPTP map (completely positive trace preserving map) and give its Kraus representation.

1. Dephasing channel. This channel acts as

$$\mathcal{E}(\rho) = (1 - p) \, \rho + p \, Z \rho Z \ .$$

Show that the action of the dephasing channel on the Bloch vector is

$$(r_x, r_y, r_z) \mapsto ((1-2p)r_x, (1-2p)r_y, r_z)$$
,

i.e., it preserves the component of the Bloch vector in the Z direction, while shrinking the X and Y component.

2. Amplitude damping channel. The amplitude damping channel is giving by the Kraus operators

$$\Pi_0 = \sqrt{\gamma} |0\rangle \langle 1|, \quad \Pi_1 = |0\rangle \langle 0| + \sqrt{1-\gamma} |1\rangle \langle 1|,$$

where $0 \le \gamma \le 1$. Here, Π_0 describes a decay from $|1\rangle$ to $|0\rangle$, and γ corresponds to the decay rate.

(a) Consider a single-qubit density operator with the following matrix representation with respect to the computation basis

$$\rho = \left(\begin{array}{cc} 1-p & \eta \\ \eta^* & p \end{array} \right),$$

where $0 \le p \le 1$ and η is some complex number. Find the matrix representation of this density operator after the action of the amplitude damping channel.

- (b) Show that the amplitude damping channel obeys a composition rule. Consider an amplitude damping channel \mathcal{E}_1 with parameter γ_1 and consider another amplitude damping channel \mathcal{E}_2 with parameter γ_2 . Show that the composition of the channels, $\mathcal{E} = \mathcal{E}_1 \circ \mathcal{E}_2$, $\mathcal{E}(\rho) = \mathcal{E}_1(\mathcal{E}_2(\rho))$, is an amplitude damping channel with parameter $1 (1 \gamma_1)(1 \gamma_2)$. Interpret this result in light of the interpretation of the γ 's as a decay probability.
- 3. Twirling operation. Twirling is the process of applying a random Pauli operator (including the identity) with equal probability. Explain why this corresponds to the channel

$$\mathcal{E}(\rho) = \frac{1}{4}\rho + \frac{1}{4}X\rho X + \frac{1}{4}Y\rho Y + \frac{1}{4}Z\rho Z .$$

Show that the output of this channel is the maximally mixed state for any input, $\mathcal{E}(\rho) = \frac{1}{2} \mathbb{1}$.

Hint: Represent the density operator as $\rho = \frac{1}{2}(I + r_xX + r_yY + r_zZ)$ and apply the commutation rules of the Pauli operators.

Problem 3: Purifications.

1. Consider the following three ways of expressing the maximally mixed state as an ensemble:

$$\tfrac{1}{2}1\!\!1 = \tfrac{1}{2}|0\rangle\langle 0| + \tfrac{1}{2}|1\rangle\langle 1| = \tfrac{1}{2}|+\rangle\langle +| + \tfrac{1}{2}|-\rangle\langle -| = \tfrac{1}{4}|0\rangle\langle 0| + \tfrac{1}{4}|1\rangle\langle 1| + \tfrac{1}{4}|+\rangle\langle +| + \tfrac{1}{4}|-\rangle\langle -| \ .$$

- (a) Construct purifications for all three ensemble decompositions, such that the corresponding ensemble is obtained upon measuring the purifying system in the computational basis.
- (b) Show that all those purifications can be transformed into each other by acting with a unitary on the purifying systems, and explicitly construct this unitary (remember that you might have to pad with zeros).
- (c) Give POVM measurements which realize each of the three ensemble decompositions by measuring the maximally entangled state $(|00\rangle + |11\rangle)/\sqrt{2}$.
- 2. Consider two ensemble decompositions

$$\sum p_i |\psi_i\rangle\langle\psi_i| = \sum q_j |\phi_j\rangle\langle\phi_j| = \rho$$

of the same density matrix ρ . We will prove that in that case, the ensembles are related via

$$\sqrt{p_i}|\psi_i\rangle = \sum_j u_{ij}\sqrt{q_j}|\phi_j\rangle \tag{1}$$

with (u_{ij}) a unitary (after possibly padding the decompositions with zeros). To start with, restrict to the case where $|\phi_i\rangle$ is an eigenbasis, and define

$$u_{ij} = \langle \phi_j | \psi_i \rangle \sqrt{p_i/q_j}$$
.

- (a) Show that u_{ij} fulfils Eq. (1).
- (b) Show that (u_{ij}) has orthogonal columns.
- (c) Show that by padding the $|\phi_i\rangle$ decomposition with zeros, we can make (u_{ij}) unitary.
- (d) Now consider the general case, where $|\phi_i\rangle$ is not necessarily an eigenbasis.

Hint: Connect the two ensembles by going through the eigenvalue decomposition of ρ .

Problem 4: Schmidt decomposition.

Find the Schmidt decomposition of the following states:

$$\begin{split} |\psi_1\rangle &= \frac{|0\rangle|0\rangle + |1\rangle|1\rangle}{\sqrt{2}} \\ |\psi_2\rangle &= \frac{|0\rangle|0\rangle + |0\rangle|1\rangle}{\sqrt{2}} \\ |\psi_3\rangle &= \frac{|0\rangle|0\rangle + |0\rangle|1\rangle + |1\rangle|0\rangle + |1\rangle|1\rangle}{2} \\ |\psi_4\rangle &= \frac{|0\rangle|0\rangle + |0\rangle|1\rangle + |1\rangle|0\rangle - |1\rangle|1\rangle}{2} \\ |\psi_5\rangle &= \frac{|0\rangle|0\rangle + |0\rangle|1\rangle + |1\rangle|0\rangle}{\sqrt{3}} \end{split}$$