
Lecture “Quantum Information” WS 18/19 — Exercise Sheet #3

Problem 1: Dense coding.

Dense coding can be seen as the inverse protocol to teleportation. As in teleportation, Alice and Bob
have free entanglement – Bell states |Φ+〉 = 1√

2
(|00〉 + |11〉) – at their disposal, but now, they want to

use it to transmit classical information by sending quantum states as efficiently as possible, i.e., they
want to transmit the maximum amount of classical information per qubit sent. Clearly, by encoding one
classical bit into one qubit (e.g., as |0〉 and |1〉), they can transmit one classical bit per quantum bit sent.
The goal is thus to do better.

1. Show that by acting on her part of |Φ+〉, Alice can transform the shared Bell state |Φ+〉 into any
other Bell state.

2. Use this to set up a protocol where Alice can transmit two classical bits by sending only one
quantum bit, by using the pre-shared Bell states. This protocol is called dense coding, or sometimes
super-dense coding.

3. Use dense coding, together with teleportation, to show that both protocols are optimal given that
shared entanglement is free – this is, we cannot send more classical bits per qubit transmitted,
and teleportation of a qubit requires at least two classical bits to be sent (even if we use more
complicated protocols sending larger amounts of data at once).

Problem 2: CHSH inequality I: Local hidden variable and no-signalling correlations.

Consider the scenario of the CHSH inequality. Let

〈C〉 = 〈a0b0〉+ 〈a1b0〉+ 〈a0b1〉 − 〈a1b1〉 .

Here, ax = ±1 and by = ±1 are the outcomes obtained by Alice and Bob given an input (measurement
setting) of x (on Alice’s side) and y (on Bob’s side). The measurement is described by some joint
conditional probability distribution P (a, b|x, y) [i.e.,

∑
a,b P (a, b|x, y) = 1],

〈axby〉 =
∑
a,b

a bP (a, b|x, y) .

1. A local hidden variable (LHV) distribution is of the form

P (a, b|x, y) =
∑
λ

pλP
A
λ (a|x)PBλ (b|y) .

Use this to derive the bound |〈C〉| ≤ 2. (This should be done by explicitly using the form of
P (a, b|x, y), not by making any intuitive assumptions about LHV distributions. Hint: It can be
helpful – though not necessary – to make PAλ and PBλ deterministic by introducing a new random
variable λ.) Which property of P (a, b|x, y) allows to obtain this bound?

2. A non-signalling distribution is a distribution which does not allow for communication between
Alice and Bob, i.e., Alice’s marginal distribution PA(a|x) =

∑
b P (a, b|x, y) does not depend on

Bob’s input y, and vice versa. Show that non-signalling distributions can obtain the maximum
possible value |〈C〉| = 4.

3. Give a distribution P (a, b|x, y) which violates no-signalling.

Problem 3: CHSH inequality II: Tsirelson’s bound.

Tsirelson’s inequality bounds the largest possible violation of the CHSH inequality in quantum mechanics
(namely 2

√
2). To this end, let a0, a1, b0, b1 be Hermitian operators with eigenvalues ±1, so that

a20 = a21 = b20 = b21 = 11 .

Here, a0 and a1 describe the two measurements of Alice, and b0 and b1 those of Bob; in particular, this
means that Alice’s and Bob’s measurements commute, i.e. [ax, by] = 0 for all x, y = 0, 1. Define

C = a0b0 + a1b0 + a0b1 − a1b1 .



1. Determine C2.

2. The norm of a bounded operator M is defined by

‖M‖ = sup
|ψ〉

‖M |ψ〉‖
‖|ψ〉‖

,

that is, the norm of M is the maximum eigenvalue of
√
M†M . Verify that the norm has the

properties

‖MN‖ ≤ ‖M‖‖N‖ ,
‖M +N‖ ≤ ‖M‖+ ‖N‖ .

3. Find an upper bound on the norm ‖C2‖.

4. Show that for Hermitian operators ‖C2‖ = ‖C‖2. Use this to obtain an upper bound on ‖C‖.

5. Explain how this inequality gives a bound on the maximum possible violation of the CHSH in-
equality in quantum mechanics. This is known as Tsirelson’s bound, or Tsirelson’s inequality.

Problem 4: LOCC protocols.

Suppose |ψ〉 can be transformed to |φ〉 by LOCC. A general LOCC protocol can involve an arbitrary
number of rounds of measurement and classical communication. In this problem, we will show that
any LOCC protocol can be realized in a single round with only one-way communication, i.e., a proto-
col involving just the following steps: Alice performs a single measurement described by measurement
operators Kj , sends the result j to Bob, and Bob performs a unitary operation Uj on his system.

The idea is to show that the effect of any measurement which Bob can do can be simulated by Alice
(with one small caveat) so all Bob’s actions can actually be replaced by actions by Alice.

1. First, suppose that Bob performs a measurement with operators Mj =
∑
klMj,kl|k〉B〈l|B on a

pure state |ψ〉AB =
∑
λl|l〉A|l〉B , with the resulting state denoted as |ψj〉. Now suppose that Alice

performs a measurement with operators Nj =
∑
klMj,kl|k〉A〈l|A on a pure state |ψ〉, with resulting

state denoted as |φj〉. Show that there exist unitaries Uj on system A and Vj on system B such
that |ψj〉 = (Uj ⊗ Vj)|φj〉.

2. Use this to explain how any multi-round protocol can be implemented with one measurement done
by Alice followed by a unitary operation done by Bob which depends on Alice’s outcome.

Problem 5: Entanglement conversion of multiple copies.

Consider the problem of converting a state |χ〉 =
√

3
4 |00〉+

√
1
4 |11〉 to the Bell state |Φ+〉 =

√
1
2 |00〉+√

1
2 |11〉. As we have seen in the lecture, the maximum success probability for this conversion can be

determined using the majorization criterion.

1. Determine the maximum success probability P1 for converting |χ〉 into |Φ+〉.

2. Show that there is a protocol which takes three copies of |χ〉 and produces into 3 copies of |Φ+〉
with probability p3 = 1

8 and 2 copies with p2 = 5
8 , respectively. What is the average yield P3 of

|Φ+〉 per copy of |χ〉 used?

3. Show that by using 2 copies, the average yield does not improve as compared to one copy.

4. Show that the protocol of 2. is optimal.

5. Find the optimal protocol for converting 2 or 3 copies of a state |χt〉 =
√

1− t|00〉+
√
t|11〉 to Bell

states. What is the maximum gain in the yield of |Φ+〉, i.e., P2/P1 and P3/P1?

(Note: While straightforward, it might be helpful to use a computer algebra system for solving the
systems of equations.)


