
Lecture “Quantum Information” WS 19/20 — Exercise Sheet #5

Problem 1: One-qubit unitaries.

1. Show that for any U such that U2 = I, it holds that exp[iφU ] = cosφ 11 + i sinφU.

2. Verify that Rz(φ) rotates a state about the z-axis by angle φ. This is, given a state ρ with Bloch
vector r̂ = (rx, ry, rz), show that the Bloch vector of ρ′ = Rz(φ)ρRz(φ)

† is r̂ rotated by φ about z.

3. Show that up to a global phase, any unitary one-qubit transformation U can be implemented
with three rotations about the x and z-axes, i.e. find angles α, β, γ and α′, β′, γ′ such that U =
Rx(α)Rz(β)Rx(γ) and U = Rz(α

′)Rx(β
′)Rz(γ

′). (Hint: Up to a global phase factor, any unitary
transformation on a single qubit is a rotation U = Rn̂(φ) by an angle φ about axis n̂ = (nx, ny, nz).)

(Note: There is nothing specific about the choice of x and z axes, one may e.g. choose y and z instead,
such that for some angles α, β, γ it e.g. also holds that U = Rz(α)Ry(β)Rz(γ) for any U .)

Problem 2: Controlled-U gate.
In this exercise, we will show that for any unitary matrix U , the controlled-U gate can be realized using
only one-qubit and CNOT gates.

1. Use the previous exercise to show that for a special unitary matrix U ∈ SU(2) (i.e. det(U) = 1),
there exist matrices A,B,C ∈ SU(2) such that ABC = I and AXBXC = U , where X is one of
the Pauli matrices.

2. Based on this, find a realization of the controlled-U gate (for any unitary U) that uses only the
matrices A, B, and C, CNOT gates, and an additional one-qubit gate E that is used to adjust the
global phase.

Problem 3: Gate identities.
Verify the following gate identities given in the lecture:

1. Verify the identities for the behavior of the CNOT gate when conjugating it with Hadamard gates.

2. Verify the construction for the Toffoli gate using controlled-V gates.

(Note: While both of these identities can be verified by multiplying out the matrices, it is more instructive
to treat the control qubits as “classical”, i.e., consider each of their values in the computational basis.)

Problem 4: n-qubit Toffoli gate.
An n-qubit Toffoli gate is a Toffoli gate with n − 1 controls; i.e., it flips the nth bit if and only if the
other n− 1 bits are all one.

1. Show that the n-qubit Toffoli gate can be implemented using two n− 1-qubit Toffoli gates and two
regular 3-qubit Toffoli gates using one ancillary qubit.

2. Decomposing every gate into 3-qubit Toffoli gates, how many 3-qubit Toffoli gates do you need to
construct the n-qubit Toffoli gate?

3. Find a construction which is more efficient in terms of the scaling of the number 3-qubit Toffoli
gates used, at the cost of using more ancillas. (A linear number of 3-fold Toffoli gates should
suffice.)

(Hint: Remember that the Toffoli gate can be used to build a logical AND gate using ancillas.)

Problem 5: The Bernstein-Vazirani algorithm.
This is a variation of the Deutsch-Jozsa problem. Suppose that the quantum black box computes one
of the functions fa, where fa(x) = a · x and a is an n-bit string. In the quantum circuit formalism, this
corresponds to a unitary Ua s.t. Ua|x〉 = (−1)a·x|x〉. In other words, the unitary applies the Z gate to



the kth qubit, iff the string a has 1 on the kth position (for all k ∈ {1, 2, ..., n}). The task is to determine
a. Show that this problem can be solved by the Deutsch-Jozsa algorithm. That means that we use the
same quantum circuit, just with a different oracle (and a different interpretation of the measurement
result).


